\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- The current is the same everywhere in a simple electric circuit.
\qquad
- The voltage drops as you go through a \qquad resistor (or component).
- Energy is used by the resistor (or \qquad component).
- The voltage drop across the resistor can \qquad be calculated with Ohm's law.

$$
V_{\text {resistor }}=I R
$$

Resistors in Series

- Components connected in series are connected one after the other in the same branch of a circuit.

- We can calculate an equivalent resistance to the resistors in this circuit.
- An equivalent resistor is a resistor that has the same resistance as the combined resistance of a set of other resistors.
- $V_{\text {battery }}=I R_{\text {equiv }}$

- In a series circuit, the same current flows through all the components.
- There is only one path.
- The voltage drop across each resistor is $V=I R$.
- The sum of these voltages must equal the output of the battery.

$$
\begin{aligned}
& V_{\text {battery }}=V_{1}+V_{2}+V_{3} \\
& V_{\text {battery }}=I R_{1}+I R_{2}+I R_{3}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {battery }}=I\left(R_{1}+R_{2}+R_{3}\right) \\
& \frac{V_{\text {battery }}}{I}=R_{1}+R_{2}+R_{3} \\
& \text { but } \quad R_{\text {equiv }}=\frac{V_{\text {battery }}}{I} \\
& \text { so } \\
& R_{\text {equiv }}=R_{1}+R_{2}+R_{3}
\end{aligned}
$$

- A circuit with resistors in series is known as a voltage divider.
- The voltage is divided among the resistors.

Resistors in Parallel

- Components are in parallel when both \qquad ends of each component are connected directly together.
- There are multiple ways for the current to travel.

- In a parallel circuit, the voltage drop across each component is the same.
- They are connected (to the same wire) on both sides of the component.
- The current through each component may be different as the resistance may be different.
- The voltage across each resistor is

$$
V=I_{1} R_{1}=I_{2} R_{2}=I_{3} R_{3}
$$

- Rearranging these equations gives
$I_{1}=\frac{V}{R_{1}} \quad I_{2}=\frac{V}{R_{2}} \quad I_{3}=\frac{V}{R_{3}}$
- Charge is conserved. Therefore, the sum of the individual currents is the total current in the circuit, I.

$$
\begin{aligned}
& I=I_{1}+I_{2}+I_{3} \\
& I=\frac{V}{R_{1}}+\frac{V}{R_{2}}+\frac{V}{R_{3}}=V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) \\
& \frac{I}{V}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
\end{aligned}
$$

but

$$
\frac{1}{R_{\text {equiv }}}=\frac{I}{V}
$$

so

$$
\frac{1}{R_{\text {equiv }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

- A circuit with resistors in parallel is known as a current divider.
- The current is divided among the resistors.

Example

Calculate the equivalent resistance of the circuit, the voltage drop across each resistor, and the current through each resistor.

$$
\begin{aligned}
& 10 \mathrm{~V} \underset{{ }_{\mathrm{T}}^{\mathrm{T}} \mathrm{~T} .33 \Omega}{\text { REQ2 }} \quad I=\frac{V}{R}=\frac{10}{73.33}=0.136 \mathrm{~A} \\
& \text { R1, REQ1, and R4 } \\
& \text { are in series. } \\
& \text { Therefore, all have } \\
& \text { the same current. } \\
& I_{\mathrm{R} 1}=I_{\mathrm{REQ} 1}=I_{\mathrm{R} 4}=0.136 \mathrm{~A} \\
& V_{\mathrm{R} 1}=(0.136)(10)=1.36 \mathrm{~V} \\
& V_{\text {REQ1 }}=(0.136)(13.33)=1.81 \mathrm{~V} \\
& V_{\mathrm{R} 4}=(0.136)(50)=6.8 \mathrm{~V}
\end{aligned}
$$

R2 and R3 are in parallel. Therefore, the voltage drop is the same across both resistors.

$$
V_{2}=V_{3}=1.81 \mathrm{~V}
$$

$I_{\mathrm{R} 2}=\frac{1.81}{40}=0.045 \mathrm{~A}$
$I_{\mathrm{R} 3}=\frac{1.81}{20}=0.091 \mathrm{~A}$

Power

- Electric power is the rate at which electric \qquad energy is transferred in a circuit.

$$
P=I V
$$

- The power could be converted to mechanical energy, for example in a motor.
- The power could also be dissipated as heat from the resistance in the circuit.
- We can use Ohm's law to substitute for either voltage or current.

$$
P=I^{2} R
$$

$$
P=\frac{V^{2}}{R}
$$

